This week

1. Section 9.1: solutions, slope fields, Euler’s method
2. Section 9.2: first-order linear equations
3. Section 9.3: applications
A (first order) differential equation is an equation involving an unknown function and its derivatives
\[F(x, y, y') = 0 \]

A solution is a function \(y(x) \), that satisfies the differential equation:
\[F(x, y(x), \frac{dy(x)}{dx}) = 0. \]

A normal (first order) differential equation is an equation of the form
\[y' = f(x, y) \]

Example:
\[y' = \cos(x) \]

The function \(y(x) = \sin(x) \) is a solution because
\[\frac{dy(x)}{dx} = \frac{d}{dx}(\sin(x)) = \cos(x). \]

Every anti-derivative of \(\cos(x) \) is a solution of \((*) \).

The solutions of \((*) \) are
\[y(x) = \sin(x) + C \]
with \(C \) an arbitrary constant.
What is a differential equation?

Example:

\[y' = 2xy \]

- The function \(y(x) = e^{x^2} \) is a solution because

\[\frac{d}{dx} y(x) = \]

- For every \(C \) the function \(y(x) = Ce^{x^2} \) is a solution:

\[\frac{d}{dx} Ce^{x^2} = \]

Definition

- An additional condition like \(y(x_0) = y_0 \) where \(x_0 \) and \(y_0 \) are given values is called an initial condition or boundary condition.

- A set of equations of the form

\[
\begin{cases}
 F(x, y, y') = 0, \\
 f(x_0) = y_0,
\end{cases}
\]

is called an initial value problem or boundary value problem.
Slope fields

1.5

\[y(x) \text{ is solution of } y' = f(x, y) \]

passing through \(y_0 = y(x_0) \)

The slope of \(\ell \) is \(y'(x_0) = f(x_0, y_0) \)

Slope fields

1.6

\[y' = 0 \]

\[y(x) = \]
Slope fields

1.7

\[y' = y \]

\[y(x) = \]

Slopefield of \(y' = y \)

1.8

\[y' = y - x \]

\[y(x) = \]

\[y(0) = 0 : y(x) = \]

\[y(0) = 1 : y(x) = \]

\[y(0) = 2 : y(x) = \]

\[\checkmark \text{Slopefield of } y' = y - x \]
Euler’s method

\[y' = f(x, y) \]

- Recall that a derivative is the limit of a difference quotient

\[\frac{dy}{dx} = \lim_{h \to 0} \frac{y(x + h) - y(x)}{h} \]

- For small \(h \) we have

\[\frac{y(x + h) - y(x)}{h} \approx y'(x) = f(x, y(x)), \]

hence

\[y(x + h) \approx y(x) + h f(x, y(x)). \]

Euler’s method

- The equation of tangent line \(\ell \) is \(y = y_0 + (x - x_0)f(x_0, y_0) \).

- Approximate \(f(x_0 + h) \) with \(y_0 + hf(x_0, y_0) \).
Euler’s method

\[\begin{align*} y' &= f(x, y) \\ y(x_0) &= y_0 \end{align*} \]

- Fix the step size \(h \).
- Make a table of points \((x_n, y_n)\), starting with \((x_0, y_0)\), where every point is calculated from the previous one with the equations

\[
\begin{align*}
x_{n+1} &= x_n + h \\
y_{n+1} &= y_n + h f(x_n, y_n)
\end{align*}
\]

\[
\begin{array}{|c|c|c|}
\hline
n & x_n & y_n \\
\hline
0 & 0 & 0 \ \\
1 & 0.5 & 0 \ \\
2 & 1.0 & \ \\
3 & 1.5 & \ \\
4 & 2.0 & \ \\
5 & 2.5 & \ \\
\hline
\end{array}
\]
Euler’s methods

Approximation become better by choosing smaller values for h.

Definition

A linear first order differential equation is a differential equation of the form

$$y' + P(x)y = Q(x)$$

where P and Q are functions of x.

- Notice that $y' = f(x, y)$ with $f(x, y) = Q(x) - P(x)y$.
- The equation is called first-order because it only contains the first derivative of y.
- The equation is called linear because there are no nonlinear terms containing y and y', such as y^2 or $\cos(y')$.
Linear first order differential equations

\[y' + Py = Q \]

- Assume \(v(x) \) is a function that satisfies the equation
 \[v' = P v. \]
 \hspace{1cm} (1)

- Then
 \[\frac{d}{dx}(vy) = \]

- Integrate left- and right-hand side
 \[vy = \]

- Divide left- and right-hand side by \(v \):
 \[y(x) = \]

Linear first order differential equations

\[y' + Py = Q \]

- Equation (1) is a **separable** differential equation that can be solved by integration (see lectures of week 2):
 \[v' = Pv \quad \implies \quad v(x) = e^\int P(x) \, dx, \]

 where \(\int P(x) \, dx \) is an anti-derivative of \(P(x) \).

Solving a linear differential equation goes in two steps:

1. Find the **integrating factor** \(v \):
 \[v(x) = e^\int P(x) \, dx. \]
2. Find the solutions:
 \[y(x) = \frac{1}{v(x)} \int v(x) Q(x) \, dx. \]
Always check your answer!

\[y' + P(x)y = Q(x) \]

(1)

- For linear first-order differential equations, the solution is always of the form

\[
y(x) = \frac{1}{v(x)} \int v(x) Q(x) \, dx = g(x) + C h(x).
\]

Check you answer

- The function \(g(x) \) should satisfy equation (1).
- Function \(h(x) \) should satisfy the equation \(y' + P(x)y = 0 \).

The differential equation \(y' + P(x)y = 0 \) is called the complementary equation.

Example 1

\[y' - 2x y = x \]

- \(P(x) = -2x \) and \(Q(x) = x \).
- \[\int P(x) \, dx = \]
 hence \(v(x) = \).
- Integrate \(v(x) Q(x) \):
 \[\int x e^{-x^2} \, dx = \]
- Find \(y \):
 \[y = \]
Example 2

\[xy' + 2y = x^3 \quad (x > 0) \]

- Rewrite the equation in the form \(y' + Py = Q \):

\[y' + \frac{2}{x}y = x^2 \implies P(x) = \frac{2}{x} \quad \text{and} \quad Q(x) = x^2 \quad (1) \]

- Calculate the integrating factor:

\[
\int P(x) \, dx =
\]

\[v(x) = \]

- Find \(y \):

\[
y = \]

RL circuits

\textbf{Inductor} — stores energy in a magnetic field

\textbf{Resistor} — limits the flow of current
4.2 Ohm’s law for RL circuits

\[L \frac{di}{dt} + Ri(t) = V(t) \]

If we apply a constant voltage \(V(t) = V \) and close the circuit at \(t = 0 \) what will happen with the current \(i(t) \)?

\[\int P(t) \, dt = \cdot \quad \text{hence } v(t) = \]

4.3

\[\left\{ \begin{array}{l} \frac{di}{dt} + \frac{R}{L} i(t) = \frac{V}{L}, \\ i(0) = 0. \end{array} \right. \]

Find the general solution:

\[i(t) = \]

Setting \(i(0) = 0 \) we get \(C = \cdot \quad \text{hence } \]

\[i(t) = \]
The differential equation

\[
\begin{aligned}
\frac{di}{dt} + \frac{R}{L}i(t) &= \frac{V}{L}, \\
i(0) &= 0.
\end{aligned}
\]

has the solution

\[
i(t) = \frac{V}{R} \left(1 - e^{-\frac{Rt}{L}}\right)
\]

The current will eventually reach a steady state value

\[
i_S = \lim_{t \to \infty} i(t) = \frac{V}{R}.
\]

Step response: it takes time to reach the steady state current \(i_S = V/R\).

- At \(t = L/R\) the current is \((1 - \frac{1}{e})i_S \approx .631i_S\).
- At \(t = 3L/R\) about 95% of the steady state current is reached.
- The steady state is reached faster for smaller values of \(L/R\).
Low-pass filters

Consider a circuit with $R = L = 1$ (to simplify the algebra) and an oscillating voltage source $V(t) = \cos(\omega t)$.

$$\frac{di}{dt} + i(t) = \cos(\omega t)$$

We will show that after a while the solution is

$$i(t) = \frac{1}{\sqrt{1 + \omega^2}} \cos(\omega t - \varphi)$$

where φ is a phase shift that depends on the frequency ω.

With “after a while” we mean that $i(t) \approx \frac{1}{\sqrt{1 + \omega^2}} \cos(\omega t - \varphi)$ for large values of t.
Low-pass filters

\[\frac{di}{dt} + i(t) = \cos(\omega t) \]

- \(\int P(t) \, dt = \int 1 \, dt = t \), hence \(v(t) = e^t \).
- Find the general solution:

\[
\begin{align*}
 i(t) &= \frac{1}{v(t)} \int v(t) \cos(\omega t) \, dt \\
 &= e^{-t} \int e^t \cos(\omega t) \, dt.
\end{align*}
\]

Use integration by parts twice:

\[
\int e^t \cos(\omega t) \, dt = e^t \cos(\omega t) - \int e^t \cdot -\omega \sin(\omega t) \, dt \\
= e^t \cos(\omega t) + \omega \int e^t \sin(\omega t) \, dt \\
= e^t \cos(\omega t) + \omega \left(e^t \sin(\omega t) - \int e^t \cdot \omega \cos(\omega t) \, dt \right) \\
= e^t \cos(\omega t) + \omega e^t \sin(\omega t) - \omega^2 \int e^t \cos(\omega t) \, dt.
\]

This gives

\[
\int e^t \cos(\omega t) \, dt = e^t \left[\frac{1}{1 + \omega^2} \cos(\omega t) + \frac{\omega}{1 + \omega^2} \sin(\omega t) \right] + C.
\]
The general solution is

\[i(t) = e^{-t} \int e^t \cos(\omega t) \, dt \]

\[= \frac{1}{1 + \omega^2} \cos(\omega t) + \frac{\omega}{1 + \omega^2} \sin(\omega t) + Ce^{-t}. \]

For large values of \(t \) the term \(Ce^{-t} \) is small, so we may neglect this term:

\[i(t) = \frac{1}{1 + \omega^2} \cos(\omega t) + \frac{\omega}{1 + \omega^2} \sin(\omega t). \]